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4 family of numerical boundary conditions for far-field computational boundaries in 
calculations involving unsteady transonic flow is devised. These boundary conditions are 
developed in a systematic fashion from general principles. Both numerical and analytic 
comparisons with other currently used methods are given. 

INTRODUCTION 

Unsteady transonic flow occurs and its effects are important in many app!ications 
such as fluttering airfoils, helicopter blades, turbines, and maneuvering flight (see 
! 1, 2. 51). The basic small disturbance equation governing unsteady transonic flow 
(see [S ] j is given by 

29x, = (K - (7 + 1) cp.J fP.7, + @?., . (3, 1 j 

In numerical calculations involving transonic phenomena, typicaily the ~ompntat.jona~ 
region is as depicted in Fig. 1. The slit along the -u-axis ,determines the airfoil location 
where physical boundary conditions are imposed and the walls. 1’ = QI, s = 0: o: are 
computational boundaries with location determined by computer storage and 
accuracy requirements, etc. For the computational walls, easily implemented artificial 
boundary conditions are needed so that the (unphysical) effect of these walls on the 
computed solution is minimized. 

For essentially steady state calculations in transonic flow (when the time 
dependent term in (0.1) is small), coordinate mappin g techniques are a traditional 
and effective way of handling these computational boundaries. The theoreticai reason 
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FIG. 1. Computational region for transonic flow. A. Physical bo,undary. B. Computational boundary 
(x = 0, a; y  = QJ). 

for the success of coordinate mapping techniques under these circuymstances lies in 
the fact that the steady state far-field asymptotic behavior is given by a regular 
algebraic singularity without oscillations (see [3, p. 7741). On the other hand, when 
one is interested in genuinely unsteady transonic phenomena, solutions of (0.1) 
possess a strong oscillatory transient behavior and the far-field asymptotic behavior 
is oscillatory with essential singularities (see [5]). Under such conditions, coordinate 
mapping techniques are ineffective (see [4]) and one needs an alternative procedure 
for treating the computational boundaries. Similar remarks apply (see pp. 288-289 of 
[4]) when coordinate stretching techniques near infinity are applied to problems with 
oscillatory behavior. 

In [6, 71, the authors introduced and developed ‘a systematic technique for 
designing radiating boundary conditions at computational boundaries to be used 
when highly oscillatory transient phenomena are computed. Here we apply these 
techniques to the computational boundaries of unsteady small disturbance, transonic 
flow (depicted as y = +Ib, x = 0, a in Fig. 1). The application involves the assessment 
of two new difficulties not treated in [6, 71, 

(1) Waves propagate with essentially infinite speed when striking 
the y = kb boundaries so that a proper assessment of 
“glancing effects” is crucial. (04 

(2) The equation in (0.1) is nonlinear. 

The effects in (1) are more significant than those in (2) for the farfield boundaries, 
especially, when the flow is subsonic in the farfield. First, as background, we discuss 
well-posed far-field boundary conditions for (0.1) and describe the far-field boundary 
procedures used by Krupp and Cole (see [.5]) and Ballhaus and Goorjian (see [ 11). 
Then, we design practical radiation boundary conditions for (0.1) and present several 
strategies for treating the new difficulties in (0.2) above-the “best” strategy, of 
course, is problem dependent. We also provide analytic comparisons between the 
boundary conditions used in [ 1, 51, and the ones developed here. Finally, we 
discretize the boundary conditions and present numerical comparisons of these 
methods and those used in [ 1,5]. We concentrate only on the errors introduced by 
the computational boundaries, B, in Fig. 1. 
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Ir view of applications, we emphasize the far-field subsonic case below but also 
include a discussion of the supersonic case. The radiating boundary conditions for 
(0.1) which we construct here have obvious generalizations for the equations of three- 
dimensional unsteady small disturbance transonic flow. 

I. WELL-POSED FAR-FIELD BOUNDARY CONDITIONS 

We define K” by K* SE K - (I! + 1) C+O~ ; the flow is Locally subscrlic (supersonic) 
when K* > 0 (X* < 0). The equation in (0.1) becomes 

%,, = K*v,,, f (Pi%. i;.;j 

We assume that K* is (locally) a fixed constant in the (local) stability analysis 
presented beicw. We use the energy method for boundary conditions of the form: 

and ignored the physical boundary, A, since correct boundation conditions are weI1 
known. Stability for the higher order radiating boundary conditions developed in 
Section 2 can only be determined by more sophisticated normal mode analysis (see 
i6. l]j, or numerical experiments. We use the x-component of kinetic energy as a 
natural measure of stability and determine the boundary conditions satisfying, 

(9,)’ dx dy < 0. (3.3‘; 

We compute by integration by parts and (1.1) that 

;j)bj;(~.J2dxd~*=fl (K”&p;)d:,’ 
.X=Ll 

-; 
I 

(K*p:. - 9;) 41, + 
I = 0 I y’=b 

plqy d-7 --,feb p.rq>, dx. (1.4) 

By substituting boundary conditions of the form in (1.2) into (1.4) and verifying 
the stability criteria of (1.3), we obtain the following list of simple weii-posed 
boundary conditions (others exist via normal mode analysis): 

where c2 > K*, 

Upstream : (x = 0) (13) 

(cp, - cp,) Ix=o = 0, where cz <K*, 

P Ix=0 = 0. 
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The far-field boundary conditions used by Ballhaus and Goorjian in [ 1 ] are (only 
for the subsonic case) 

v1 = 0, on upstream and side walls, 

p,x = 0, downstream. 
(1.6) 

The far-field boundary conditions used by Krupp and Cole in [.5] are the same as 
those in (1.6) except they also implemented (a discrete version of) the boundary con- 
dition 

Vlxr La = 03 downstream. (1.7) 

Krupp and Cole mention the possibility of using a far-field fundamental-solution for 
the periodic motions studied in [5] but did not implement such an approach in their 
computational algorithms. 

While the boundary condition, p= 0 on upstream and side walls, is well posed, the 
analysis and numerical experiments in the next sections indicate that these conditions 
are “perfectly reflecting” rather than “radiating,” they are a poor choice for the far- 
field boundaries. 

2. DESIGN OF RADIATING BOUNDARY CONDITIONS 

The design of effective far-field radiation boundary conditions depends on the wave 
propagation properties of the equation 

2fP,,, = K”~,, + a)yy 2 (2.1) 

where K* is a fixed constant. Given a unit vector, o = (or, LX*), the equation in (2.1) 
has plane wave solutions, f(ct - xol - JU+), with local wave speed given by 

(2.2) 

From (2.2) it follows that the speed of propagation is arbitrarily large in the unit 
directions, o = (ol, oz) as w, -+ 0. As remarked in [l, 51, a point source, in the 
subsonic case, K* > 0, generates a parabolic wave front as described in Fig. 2. The 
design considerations for radiation boundary conditions vary for the side walls, 
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FIG. 2. Wave front generated by a point source S (K* > C). 

upstream. and downstream boundaries, respectively. Because signals generated in the 
interior and their reflections from the boundaries spread more quickly in the J- 
direction than in the negative s-direction, the design of effective boundary conditions 
for the side wall is most important. 

Radiation Boundary Conditions for the Side IValisT ~3 = +b. 

For the wall, J’ = fb, solutions of (2.1) generated in the interior which strike this 
w-all are superpositions of special plane waves of the form (in these Fourier modes we 
specialize to t( > 0 for simplicity), 

where & = FF(Z~LI~~- K*w,)“” = Tr(2n - K*n’)“’ with n = w!/<, @+ is defined 
using 3,. 

A boundary condition on the wall 4’ = b which annihilates the plane wave solution 
in (2.3) exactly for fixed (o,, r) is given by 

If we recall the correspondence (see [6, 71) it = a/at, iw, = B/ax, valid under Fourier 
transformation, then (2.4) is the Fourier transform of the theoretical peq’kct& 
radiating boundary condition for the equation in (2.1) and the boundary, J = b. As it 
stands, this boundary condition is not practical because it is nonlocal simultaneously 
and time. 

Next. we discuss approximating the boundary condition defined in (2.4) by local 
boundary conditions in a fashion dictated by the special wave propagation properties 
of (2.1). In particular, it follows from the remarks in (2.2) and Fig. 2 that effective 
radiating boundary condition in the “glancing regime,” 

are essential. Since we need to approximate (2n - K*H’)“~ near n = 0, the expansion 
methods used in 16, 71, do not apply directly. In the subsonic case, (2n - K*n’)“” 
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FIG. 3. Graph of (2n - K%z’)“~ and the approximations. A. (2.8). B. (2.9) for K” = 1. 

has the graph displayed in Fig. 3. The first approximate radiation boundary 
conditions which we use are based on the linear approximation 

(2n - K*n2)‘12 rz m. G-6) 

1 st radiating boundary condition. 

qy + T, l,eb = 0, r > 0. (2.7) 

The requirement, r > 0, is imposed by the stability analysis in Section 1. In the 
subsonic case, one effective strategy we have used to “tune” this radiating boundary 
condition is to choose r so that the corresponding straight line passes through the 
maximum value of (2it- K*n2)“’ resulting in 

subsonic 1 st radiating condition. 

Higher order radiating boundary conditions can be developed by using better 
rational approximations to (2n - K*n2)‘j2 near n = 0 of the form, 

(2n -K*n’)“’ =: 1 y: n . 
2 

The resulting general local second order radiating boundary conditions have the form, 

2nd radiating boundary condition. 

VI,! + r2cy + wxt Lb = 0. (2.9) 

Of course, strategies are needed to tune the radiating boundary conditions in (2.9) to 
reduce (unphysical) reflections and maintain stability. In the subsonic case, two 
simple strategies implemented in numerical experiments below are the following: 

(1) Require r, n/( 1 + r2n) to interpolate (2n - K*L?)“~ through 0 
and two other points, say 1/2K*, l/K*; (2. IO) 
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(2) Choose ri, r? so that for a given “0 

max 
O<n<ilo 

(2n - K”n2y2 - 3 2; I? 1 
2 

is minimized. 

An obvious appropriate scaling to use in any of the strategies in (2,lO) is ;o 
guarantee that Y, = c,(K*)‘12, rz = cz(K*)li2, where c,? cl are chosen by a fixed 
strategy independent of K”. 

We remark that in the supersonic case, K* < 0, the graph of (2rt - Kvna)‘li has a 
linear asymptote with slope (-K*)“’ as II + 0~). In this case. the above graph is well 
approximated by the straight line, w = (-K*)‘j2 n so that the radiation boundary con- 
ditions, 

supersonic 1 st radiating condition 

9, + (-K*)‘j2 9, lPzb = 0 (2. a 3 \ 

are already quite efficient. We note that in the supersonic case, the above linearized 
approach does not take into account the fact that shock waves may form and strike 
4’ = G in the far field. However, the shock waves that occur within the validity of the 
transonic approximation in (0.1) are necessarily weak shocks and the argument of 
Hedstrom applies (see [8]). 

Given a boundary condition, S(p) jyEb = 0 for solutions p of (2.1 j and a plane 
wave $.- of the form in (2.3) striking the wall y = b, the reflectioon coeficienr is the 
number, R(n), so that 

q- + R(n) $+> I)@ = 0. p.n2; 

Obviously, the magnitude of the reflection coetEicient, \R(n)/ is an analytic measure of 
the effectiveness of 9 as a radiating boundary condition (the smaller /R(~jj, the 
better the radiation boundary condition). For the boundary condition p lIzb = 0 used 
in ]I, 5], 

so that this boundary condition tota& reflects waves tiack into the interior with their 
magnitudes preserved. On the other hand, the most trivial subsonic 1st radiating 
boundary condition in (2.8) has 

This number is substantially smaller than 1 for most 0 < II < 2/K*-by construction. 
R( 1/K*) = 0; R( 1,/2K*) = I( 1 - 3’!2/2)/( 1 + 3 “2j2)l, etc. The higher order approx- 
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imations in (2.9) can be systematically tuned according to the strategies in (2.10) to 
substantially reduce IR(n)l in (2.13) over the approximation defined in (2.8) in the 
subsonic case (see the numerical experiments in Section 4). 

By symmetry, radiating boundary conditions on y = -b (which are analogous to 
those in (2.7) and (2.9)) have the form, 

~y-~l~*ly=--b=O~ Yl> 0, 

Pyt + r2a)yx - r1 (Oxt ly= -b = O* 

The upstream boundary, x = 0 

In the subsonic case, waves propagating from the interior and striking the 
boundary x = 0 are superpositions of the modes (< > 0 for simplicity) 

and 

fj+=e il+x+ilt+iwz 
Y 

g- = ei~~-x+iIt+iw~y, 

(2.14) 

where 

K” ’ K” ’ 
and 

The mode associated with U;, carries information away from the computational 
region. The frequency dependent theoretical radiating boundary condition (with no 
reflections) is given by 

a . ( + <( 1 - K*/3’)l” 
--I ax K” 

4 Lo = 0. 

From Fig. 2, waves generated in the interior first strike x = 0 at normal incidence 
where p = 0. Thus, the standard Taylor expansion analysis used in [6, 71 applies 
directly since p near zero is important for the wall x = 0 yielding the following 1 st 
and 2nd radiating conditions : 

The downstream boundary, x = a 

In the subsonic case, the same two modes as in (2.14) influence wave propagation 
near this boundary; however, their roles are reversed. At x = a, the mode associated 
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with A+ transports unphysical reflections back into the region of calculation. On the 
other hand, waves reflect rapidly off the boundaries 4’ = kb near the downstream 
boundary x = a (see Fig. 2) and effective radiating boundary conditions for the 
“glancing mode,” A-, are important in order to avoid a !arge mass buildup, The 
theoretical radiating boundary condition for this mode is given by 

From the Taylor expansion procedure in [ 6, 71 we formally arrive at the 1 st and 2nd 
approximations, 

9x La = 03 j2.17: 

PXY La = 0. (2,!.8j 

These conditions were introduced by Krupp and Cole in [j]. 
In the supersonic case, two boundary conditions (o = co3 o2 = 0) are needed 

upstream and no boundary conditions should be described downstream. thus no 
analysis of radiating boundary conditions is necessary. 

We conclude this section by remarking that the linearization of the equation in 
(0.1) about a solution, @, of (0.1) is given by 

i.e., the lower order term involving pX is also present. The theory deveioped in jh, 7j 
includes the design of radiating boundary conditions for equations with lower order 
terms. However, when 2nd variable coefftcient radiating approximations are used. the 
practical reduction of error is modest for linear wave calculations (see [7]). For the 
nonlinear equation in (O.l), we expect most of this improvement to be lost anyway 
because of mild nonlinear effects in the far field. However, we expect a significant 
improvement in using the second approximations in (2.9) instead of the first ones in 
(2.7) as the numericai evidence in [6, 71 indicates. 

3. DISCRETIZATION OF RADIATING BOUNDARY CONDITIONS 

We introduce the grid {(xj,ykr t”)}, xj =jdx, J.‘~ = kdy, ln = n At; j= 0, I,..., d: 
k = -K,..., K, n = 0, 1, 2,...; Ax = a/J, Ay = b/K. The solution o(xj, yk, t”) at a grid 
point is approximated by the grid function ~7,~. We use standard notation for the 
divided differences, D-t , 0” , 0: , etc. (for example, D: ~y,~ = (c$+ I,k - $~,.4),/d~). 

We concentrate here on appropriate discretization of the radiation boundary 
onditions at the side walls, y = k6. First, we give some simple compact formulae for 
the 1st and 2nd radiating boundary conditions, 

(4 

/b) 
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derived in (2.7) and (2.9) above. A simple compact formula for (3.la) (at y = b) is 
given by 

D”((!$g + v)jni-&J + rD”(q;,&l + pg&) = 0. (3.2) 

We remark that when explicit interior schemes are used, no matrix inversions are 
required. A useful compact formula for the second radiation boundary condition in 
(3.1 b) (for the 4’ = b case) is given by 

Next, we discuss implementing the radiating boundary conditions in (3.1) in the 
difference schemes used by Krupp and Cole and Ballhaus and Goorjian in [ 1,5]. 
These difference schemes are typical examples of the ones used for computations in 
transonic flow. The difference schemes used in [ 1,5] for the unsteady small distur- 
bance equation both have the following properties: (1) Each is an implicit scheme 
containing two time levels. (2) There is no linear stability constraint on At but in 
practice nonlinear instabilities can occur with large At. (3) These schemes are type 
sensitive- different approximations are used in the subsonic and supersonic cases. 
The methods differ in the following respect: In [l] an ADI-splitting is used so that 
only systems with narrow bandwidth need to be inverted, while in [5] a larger system 
of equations must be solved at each time step. 

The discrete artificial boundary conditions used by these authors are simple 
discrete analogues of those described in (1.6), (1.7), above : 

at k = fK, P;,k = 0 (side walls), 

at j=O, (Pon,k = 0 (upstream), (3.4) 

at j=J, 0” P;,~ = 0 or (0”)’ q~)Jn,~ = 0 

(downstream). 

The first approximate radiating boundary condition can be discretized by using (3.2). 
The scheme in (3.2) is fully implicit and can be changed to the unitary scheme (still 
implicit) using @+l” = l/2($ + $‘+I), the result is 

Both of the approximations in (3.2) and (3.5) are second order accurate and can be 
used directly with the schemes in [ 1, 51 without any modification. We remark that the 
reflected errors in using the first order approximation in (3.la) are not particularly 
sensitive to small changes in K* so that r can often be kept constant-of course, the 
value of r can be made a function of the x-difference in q. 

Convenient approximations of the second order radiating boundary conditions in 
(3. lb) which are designed for use with the schemes in [ 1,5] are given by (3.3). 

The discretization of the upstream radiating boundary conditions at x = 0 from 
(2.15), (2.16) is standard following the techniques in [6, 71 so we omit a detailed 
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description here. At downstream bundaries the implemenration in the schemes 
developed in [I, 5 ] is straightforward. 

Numerical Experiments 

In the numerical experiments we used a modified version of the ADI scheme of 
Cole-Murman type from [2]. The nonlinear x-sweep was, however, treated in a f&y 
explicit fashion (for convenience); the y-sweep was kept implicit. 

At -v = kb, we implemented the 1st and 2nd radiating boundary conditions from 
(2.7) and (2.9) with the discretization from (3.2) and (3.3) respectiveiy. II; the 
strategy in (2.1(I), (1) was used. Upstream, we implemented a straightforward discrete 
version of the first radiating boundary condition in (2.15) (see (6, 7;). For purposes 
of comparison we also implemented the discrete boundary conditions from i I, 5 i 
described in (3.4). 

Below, we report on the numerical values resulting from a typical numericai 
experiment involving discrete solutions of (0.1). Xn this experiment, we used a free 
stream value K s 0.9, a computational grid with 2000 points, and a C.F.L. condZticn 
of 0.5. For initial values we used a pulse with compact support and continuaas %sr 
derivatives centered in the middle of the computational grid ( a piece of a radiarig; 
symmetric sine curve). After a short time the main energy in the puise spreads o-u? in 
a parabolic wavefront (see Fig. 2) and reflections occur at the computationa! bcw- 
daries. We looked at the resulting discrete solution after 2OG time steps. The quantlt;; 
measured beiow is the maximum value of the reflected error normaiired SC rhat it is 
SE for the standard reflecting boundary conditions, 

Vlv=*b- - 0, q I& = 0, p, ~x=a = 0, 
We computed the reflected errors in all cases by solving the lnitiai value problem on 
a much larger region and subtracting the two solutions. 

Side Boundary (y = k 6) 

(Normalized normalized reflected error) 

Boundary condition O<.Y<U o<.s<;s 

lJ=O 1.00 i .oo 
1 st radiating b.c. 0.37 0.05 

2rd radiating kc. 0.18 0.06 

We remark that in this experiment and all other numerical tests which we have 
made. the error downstream near x = a builds up immediately but propagates veq 
slowly into the computational region; thus, the maximum of the reflected errors is 
reduced even further by the 1st and 2nd radiating boundary conditions on a small:er 
domain such as 0 < x ,< aa. If the coefficients of r, and rz are tuned in a t;me- 
dependent fashion, the errors in the full domain can be reduced further. 
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At the upstream boundary, x = 0, there is a substantial reduction in the reflected 
errors for IJI using only the 1st radiating boundary condition and some improvement 
in 9x. 

Upstream Boundary (x = 0) 

(Normalized maximum reflected error) 

Boundary condition reflection in v, 

cp=o 1.00 
1st radiating b.c. 0.08 

reflection in q, 

1.00 
0.38 

At the downstream boundary, x = a, we compared the choices qx Ixza and 
pl, lx=(l = 0. The improvement in q~ is modest but the gain in ~1, in this case is more 
substantial. 

Downstream Boundary (X = a) 

(Normalized maximum reflected error) 

Boundary condition 

Ix La = 0 
v I==0 xx x (1 

reflection in 9 

1.00 
0.8 I 

reflection in ox 

1.00 
0.29 

For a more detailed description of the reflection from the side boundaries, see 
the graph in Fig. 4 where the amplitude of the reflection at a fixed mesh point in 
space is plotted as a function of time for the boundary conditions q~ IB=fb = 0 used in 
[ 1, 51 and the 2nd radiating boundary condition described above. 

Several calculations with different parameters were performed. The experiment 
described above is typical but the actual numbers may vary between different 
problems. 

FIG. 4. The amplitude of the reflections from the side boundaries at a fixed mesh point in space is 
plotted as a function of time. The mesh point is located at the distance dy from the side boundary. The 
boundary condition q~ lyZb = 0 (triangle) and the 2nd radiating boundary condition (2.9) (circle). 
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Using systematic principles, a family of far-field radiating boundary conditions for 
the small disturbance equation of unsteady transonic flow was derived. These discrete 
far-field boundary conditions are easily implemented with a variety of popuiar 
difference schemes for transonic flow. Both the analytic and numerical comparisons 
indrcate substantial improvements over other currently used methods for treating such 
far-field boundaries. 

-Vote added in proojI Also see the calculations reported by Kwak [9] for further experiments with 
these methods. 
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